Markscheme

May 2018

Chemistry

Standard level

Paper 2

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question			Answers			Notes	Total
1.	a	i	molar mass of urea «= $4 \times 1.01+2 \times 14.01+12.01+16.00 »=60.07 « \mathrm{~g} \mathrm{~mol}^{-1} » \checkmark$ «\% nitrogen $=\frac{2 \times 14.01}{60.07} \times 100=» 46.65$ «\%» \checkmark			Award [2] for correct final answer. Award [1 max] for final answer not to two decimal places.	2
1.	a	ii	«cost» increases AND lower N \% «means higher cost of transportation per unit of nitrogen» OR «cost» increases AND inefficient/too much/about half mass not nitrogen \checkmark			Accept other reasonable explanations. Do not accept answers referring to safety/explosions.	1
1.	b		Electron geometry Molecular geometry Nitrogen tetrahedral \checkmark trigonal pyramidal \checkmark Carbon trigonal planar \checkmark trigonal planar			Note: Urea's structure is more complex than that predicted from VSEPR theory.	3
1.	c		$n(\mathrm{KNCO}) «=0.0500 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3} »=5.00 \times 10^{-3}$ «mol» \checkmark «mass of urea $=5.00 \times 10^{-3} \mathrm{~mol} \times 60.07 \mathrm{~g} \mathrm{~mol}^{-1} »=0.300$ «g» \checkmark			Award [2] for correct final answer.	2
1.	d		« $K_{\mathrm{c}} »$ decreases AND reaction is exothermic OR « K_{c} » decreases $\boldsymbol{A N D} \Delta H$ is negative OR « $K_{\mathrm{c}} »$ decreases AND reverse/endothermic reaction is favoured \checkmark				1

Question			Answers	Notes	Total
1.	e	i	Any one of: urea has greater molar mass \checkmark urea has greater electron density/greater London/dispersion \checkmark urea has more hydrogen bonding \checkmark urea is more polar/has greater dipole moment \checkmark	Accept "urea has larger size/greater van der Waals forces". Do not accept "urea has greater intermolecular forces/IMF".	1
1.	e	ii		Award [1] for each correct interaction. If lone pairs are shown on N or O , then the lone pair on N or one of the lone pairs on O MUST be involved in the H-bond. Penalize solid line to represent H-bonding only once.	2
1.	f		$2\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CO}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{~N}_{2}(\mathrm{~g})$ correct coefficients on LHS \checkmark correct coefficients on RHS \checkmark	$\begin{aligned} & \text { Accept }\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CO}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \\ & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) . \end{aligned}$ Accept any correct ratio.	2

Question			Answers	Notes	Total
1.	g	60: $\mathrm{CON}_{2} \mathrm{H}_{4}{ }^{+}$Ј 44: $\mathrm{CONH}_{2}{ }^{+} \sqrt{ }$		Accept "molecular ion".	2
1.	h	$\begin{aligned} & 3450 \mathrm{~cm}^{-1}: \mathrm{N}-\mathrm{H} \checkmark \\ & 1700 \mathrm{~cm}^{-1}: \mathrm{C}=\mathrm{O}, ~ \end{aligned}$		Do not accept "O-H" for $3450 \mathrm{~cm}^{-1}$.	2
1.	i	$1 \checkmark$			1

Question			Answers	Notes	Total
2.	a		electrostatic attraction AND oppositely charged ions \checkmark		1
2.	b		$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ OR $[\mathrm{Ar}] \vee$		1
2.	C		«promoted» electrons fall back to lower energy level $\sqrt{ }$ energy difference between levels is different \checkmark	Accept " Na and Ca have different nuclear charge" for M2.	2
2.	d	i	Any two of: stronger metallic bonding \checkmark smaller ionic/atomic radius \checkmark two electrons per atom are delocalized OR greater ionic charge \checkmark greater atomic mass \checkmark	Do not accept just "heavier" or "more massive" without reference to atomic mass.	2
2.	d	ii	delocalized/mobile electrons «free to move» \downarrow		1
2.	e		$\mathrm{pH}>7 \checkmark$	Accept any specific pH value or range of values above 7 and below 14.	1

Question			Answers	Notes	Total
3.	a	i	nickel/Ni «catalyst» high pressure OR heat \checkmark	Accept these other catalysts: Pt, Pd, Ir, Rh, Co, Ti. Accept "high temperature" or a stated temperature such as " $150^{\circ} \mathrm{C}$ ".	2
3.	a	ii		Ignore square brackets and " n ". Connecting line at end of carbons must be shown.	1
3.	b	i	$\begin{aligned} & \Delta H^{\ominus}=\text { bonds broken }- \text { bonds formed } \checkmark \\ & « \Delta H^{\ominus}=3(\mathrm{C} \equiv \mathrm{C})-6(\mathrm{C}=\mathrm{C})_{\text {benzene }} / 3 \times 839-6 \times 507 / 2517-3042=» \\ & -525 « \mathrm{~kJ} \downarrow \end{aligned}$	Award [2] for correct final answer. Award [1 max] for +525 «kJ» Award [1 max] for: $\begin{aligned} & « \Delta H^{\ominus}=3(C \equiv C)-3(C-C)-3(C=C) / \\ & 3 \times 839-3 \times 346-3 \times 614 / 2517- \\ & 2880=»-363 « k J » . \end{aligned}$	2
3.	b	ii	$\begin{aligned} & \Delta H^{\ominus}=\Sigma \Delta H_{\mathrm{f}} \text { (products) }-\Sigma \Delta H_{\mathrm{f}} \text { (reactants) } \checkmark \\ & « \Delta H^{\ominus}=49 \mathrm{~kJ}-3 \times 228 \mathrm{~kJ}=»-635 « \mathrm{~kJ} » \checkmark \end{aligned}$	Award [2] for correct final answer. Award [1 max] for "+635 «kJ»".	2

(Question 3b continued)

Question			Answers	Notes	Total
3.	b	iii	ΔH_{f} values are specific to the compound OR bond enthalpy values are averages «from many different compounds» \checkmark condensation from gas to liquid is exothermic \checkmark	Accept "benzene is in two different states «one liquid the other gas»" for M2.	2
3.	C		equal $\mathrm{C}-\mathrm{C}$ bond «lengths/strengths» OR regular hexagon OR «all» $\mathrm{C}-\mathrm{C}$ have» bond order of 1.5 OR «all» $\mathrm{C}-\mathrm{C}$ intermediate between single and double bonds \checkmark	Accept "all $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles are equal".	1
3.	d		electrophilic substitution OR $S_{E} \checkmark$		1

Question			Answers	Notes	Total
4.	a		Any two of: loss of mass «of reaction mixture/ CO_{2} » \checkmark «increase in» volume of gas produced \checkmark change of conductivity \checkmark change of $\mathrm{pH} \checkmark$ change in temperature \checkmark	Do not accept "disappearance of calcium carbonate". Do not accept "gas bubbles". Do not accept "colour change" or "indicator".	2
4.	b	i	reaction is fast at high concentration AND may be difficult to measure accurately OR so many bubbles of CO_{2} produced that inhibit contact of $\mathrm{HCl}(\mathrm{aq})$ with CaCO_{3} (s) OR insufficient change in conductivity/pH at high concentrations OR calcium carbonate has been used up/is limiting reagent/there is not enough calcium carbonate «to react with the high concentration of HCl » OR HCl is in excess OR so many bubbles of CO_{2} produced that inhibit contact of $\mathrm{HCl}(\mathrm{aq})$ with $\mathrm{CaCO}_{3}(\mathrm{~s}) \checkmark$		1
4.	b	ii	«directly» proportional \checkmark	Accept "first order" or "linear". Do not accept "rate increases as concentration increases" or "positive correlation".	1

Question		Answers	Notes	Total
5.	a	slower rate with ethanoic acid OR smaller temperature rise with ethanoic acid \checkmark [H^{+}] lower OR ethanoic acid is partially dissociated OR ethanoic acid is weak \checkmark	Accept experimental observations such as "slower bubbling" or "feels less warm".	2
5.	b	Any one of: corrosion of materials/metals/carbonate materials \checkmark destruction of plant/aquatic life \checkmark «indirect» effect on human health \checkmark	Accept "lowering pH of oceans/lakes/waterways".	1

Question		Answers	Notes	Total
6.	a	salt bridge \checkmark movement of ions OR balance charge \checkmark	Do not accept "to complete circuit" unless ion movement is mentioned for M2.	2
6.	b	Positive electrode (cathode): $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s}) \checkmark$ Negative electrode (anode): $\mathrm{Mg}(\mathrm{~s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \checkmark$	Award [1 max] if correct equations given at wrong electrodes.	2
6.	C	in external wire from left to right \checkmark		1

